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Abstract. We consider a model of copolymer adsorption where the polymer is represented by
a directed walk on the square lattice, interacting with a line defining a half-space to which the
walk is confined. For the case of an alternating copolymer we determine exactly the location of
the adsorption transition, and some associated critical exponents, and compare with the values
for the corresponding model for homopolymer adsorption.

1. Introduction

The adsorption of polymers at surfaces is a well-studied problem. The standard model
is a self-avoiding walk on a lattice, interacting with a line or plane which represents the
surface at which adsorption occurs. This model has been investigated by many different
techniques and the area has been reviewed by De’Bell and Lookman (1993). Most work has
focused on the adsorption of homopolymers but, more recently, copolymer adsorption has
received considerable attention; see, for instance, Whittington (1998) and references quoted
therein. The emphasis has been on the location of the adsorption transition, and on the
calculation of critical exponents (such as the crossover exponentφ which characterizes the
behaviour of the free energy close to the transition). For the self-avoiding walk model of
polymer adsorption such quantities can be calculated exactly only for a few problems (see,
for instance, Duplantier and Saleur 1986, Cardy 1987, Vanderzandeet al 1991, Batchelor
and Yung 1995).

Privmanet al (1988) introduced an exactly solvable model in which a homopolymer is
modelled as a directed walk on a lattice, confined to a half-space and interacting with the
line or plane defining the half-space. A particular example which they considered is a walk
on the square lattice, confined to the half-spacey > 0, and interacting with the liney = 0.
The walk starts at the origin, is self-avoiding and is not allowed to take any steps in the
negativex-direction. The weight of the walk is determined by the number ofstepsof the
walk on the liney = 0. Privmanet al (1988) solved this problem using transfer matrix
techniques, located the adsorption transition and calculated the values of various critical
exponents; see also Forgacset al (1989). For the corresponding model of a directed walk
interacting with a defect plane see Carvalho and Privman (1988).

The aim of this paper is to extend this type of model to copolymer adsorption.
Specifically we shall describe and solve a directed model of the adsorption of an alternating
copolymer, in which only one of the two monomers interacts with the surface. Our methods
are quite different from those used by Privmanet al and we first describe our approach
in section 2, and apply it to three models of homopolymer adsorption (one of which was
discussed by Privmanet al). In section 3 we make the extension to copolymer adsorption
and compare our results for the homopolymer and alternating copolymer problems.
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2. The homopolymer case

We consider self-avoiding walks on the square latticeZ2 with two added restrictions:

(i) the walk has no steps in the negativex-direction, and
(ii) the walk starts at the origin, has its last vertex on the liney = 0 and has no vertices

with negativey-coordinate.

Let bn(v) be the number of such walks withn edges havingv+1 vertices on the liney = 0.
Define

Zn(x) =
∑
v

bn(v) x
v (2.1)

and

G(x, y) =
∑
n

Zn(x) y
n =

∑
v,n

bn(v) x
vyn. (2.2)

It is easy to prove, using concatenation arguments, that the limit

κ(x) = lim
n→∞ n

−1 logZn(x) (2.3)

exists for any finitex, and thatκ(x) is continuous and monotonically non-decreasing and
is a convex function of logx. At fixed x, G(x, y) converges provided thaty < e−κ(x).
The shape of this boundary of convergence determines the free energyκ(x) and the
location of a singularity on this boundary determines the location of the adsorption phase
transition. Consequently, we focus on calculatingG(x, y) and determining its boundary of
convergence.

We shall use a version of thepartial generating functionmethod introduced by
Temperley (1956). The first step of the walk can be in the positivey-direction or the
walk can makej > 0 steps in the positivex-direction before first leaving the liney = 0.
We write g0(x, y) for the generating function of walks which immediately leave the line,
andgj (x, y) for the generating function of walks which first leave the line afterj steps on
the line. For instance,

g0(x, y) = 1+ xy3+ xy4+ x2y4+ · · · (2.4)

where the leading term represents a single point. Clearly

G(x, y) =
∑
j>0

gj (x, y) (2.5)

and

gj (x, y) = xjyj g0(x, y) (2.6)

so that

G(x, y) = g0(x, y)

1− xy (2.7)

provided that|xy| < 1.
We next define aloop to be a self-avoiding walk with no steps in the negativex-

direction, having its first and last vertices on the liney = 0 and with they-coordinate of
all other vertices being positive, i.e. a loop has only its first and last vertices on the line
y = 0. Write ln for the number of loops withn steps and define the generating function

L(y) =
∑
n

lny
n. (2.8)
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Lemma 2.1.The generating function for loops is given by

L(y) = 1− y − y2− y3−
√
y6+ 2y5− y4− y2− 2y + 1

2y
. (2.9)

Proof. We first note thatL(y) = y2[G(1, y) − 1] and we writeG(1, y) = S(y) for
convenience. By inspection

S(y) = 1+ y + y2+ 2y3+ · · · (2.10)

where the leading term represents a single point. We can write down an equation determining
S(y) by noting that the walk has its first step in either the positivex-direction or the positive
y-direction. The generating function for walks with their first step in the positivex-direction
is y S(y). If the first step is in the positivey-direction then the walk is either a loop, with
generating functiony2[S(y) − 1], or a loop followed by a walk with its first step in the
positivex-direction. Hence

S(y) = 1+ y S(y)+ y2[S(y)− 1]+ y3S(y)[S(y)− 1]. (2.11)

This immediately gives

S(y) = 1− y − y2+ y3−
√
y6+ 2y5− y4− y2− 2y + 1

2y3
(2.12)

and the lemma follows sinceL(y) = y2[S(y)− 1]. �
When we expand in powers ofy we obtain

L(y) = y3+ y4+ 2y5+ 4y6+ 8y7+ 16y8+ 33y9+ 69y10+ · · · (2.13)

and it is easy to check the first few terms by direct enumeration. Lemma 2.1 implies that
ln ∼ n−3/2(1+√2)n ∼ nγ11−1(1+√2)n so that the exponentγ11 = − 1

2.
We can expressG(x, y) in terms ofL(y) and we state this in the next lemma.

Lemma 2.2.The generating functionG(x, y) is given by

G(x, y) = 1+ x L(y)
1− xy − x2y L(y)

. (2.14)

Proof. We can write down an expression connectingg0, G andL by noticing thatg0 can
be a single point, a loop, or a loop followed by one or more steps in the surface and then
possibly a walk which leaves the surface. Hence

g0(x, y) = 1+ x L(y)+ x L(y)[G(x, y)− g0(x, y)]. (2.15)

The lemma follows on solving the simultaneous equations (2.7) and (2.15) forG. �
G(x, y) is singular ifL(y) is singular or if the denominator is zero. Hence the boundary

of convergencey = yc(x) is given by the liney = √2− 1 for x 6 x∗ and by the solution
of the equation

x = −1+√1+ 4L(y)/y

2L(y)
(2.16)

for x > x∗. The boundary of convergence has a singular point where these two branches
meet, i.e. at

(x∗, y∗) =
( √

5− 1

2(
√

2− 1)
,
√

2− 1

)
. (2.17)
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Translating into the canonical ensemble, the free energyκ(x) = log(1+ √2) for x 6 x∗,
andκ(x) = − logyc(x) > log(1+√2) for x > x∗. x∗ gives the location of the adsorption
transition. The crossover exponent describes the behaviour ofκ(x) asx → x∗+

κ(x)− κ(x∗) ∼ (x − x∗)1/φ (2.18)

and an easy calculation shows thatφ = 1
2. At x∗ we expect that

Zn(x
∗) ∼ nγ s11−1(

√
2+ 1)n (2.19)

so that

G(x∗, y) ∼ 1

[1− y(√2+ 1)]γ
s
11

(2.20)

asy → y∗−. We can calculateγ s11 by evaluating the limit

γ s11 = − lim
y→y∗

logG(x∗, y)

log[1− y(√2+ 1)]
= 1

2
. (2.21)

One can treat the case of a walk with its first vertex fixed on the liney = 0, but with
the last vertex not necessarily iny = 0, in a similar way. If we writecn(v) for the number
of n-step self-avoiding walks with the first vertex at the origin, with no steps in the negative
x-direction, no vertices with negativey-coordinate, and havingv + 1 vertices with zero
y-coordinate, then we can define the generating function

C(x, y) =
∑
v,n

cn(v) x
vyn. (2.22)

A directed tailis a self-avoiding walk with no steps in the negativex-direction, which starts
at (0, 0) and with all other vertices having positivey-coordinate. Lettn be the number of
directed tails withn steps. Clearlyt1 = 1, t2 = 2, t3 = 4, etc. Let

T (y) =
∑
n>0

tny
n. (2.23)

We shall show thatC(x, y) is determined byG(x, y) andT (y). We first show thatT (y)
can be obtained fromS(y).

Lemma 2.3.The generating function for directed tails is given by

T (y) = yS(y)

1− y − y2S(y)
. (2.24)

Proof. We first note thatT (y) = y C(1, y) and we derive an equation forC(1, y). These
walks can be either a tail, or a sequence of loops, or a sequence of loops followed by a
step iny = 0 and then followed by a tail. Therefore

C(1, y) = T (y)+ S(y)+ y S(y) T (y) (2.25)

so that

T (y) = y T (y)+ y S(y)+ y2 S(y) T (y) (2.26)

and the lemma follows on solving forT (y). �
This implies thattn ∼ n−1/2(1+√2)n so that the critical exponentγ1 = 1

2.

Lemma 2.4.The generating functionC(x, y) is given by

C(x, y) = T (y)+G(x, y)[1+ xy T (y)]. (2.27)
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Proof. The walks counted byC(x, y) are either tails or loops or sequences of loops followed
by a step iny = 0 and then followed by a tail. Hence

C(x, y) = T (y)+G(x, y)+G(x, y)[xy T (y)] (2.28)

from which the lemma follows immediately. �

Clearly C(x, y) is singular whenT (y) is singular or whenG(x, y) is singular so the
boundary of convergence ofC is identical to the boundary of convergence ofG. Translating
to the canonical ensemble this means that the limiting free energies of walks with one or
both ends on the liney = 0 are identical. Of course, this could have been proved, using
the methods of Hammersleyet al (1982), without calculating either quantity explicitly. We
can calculate the exponentγ s1 as

γ s1 = − lim
y→y∗

logC(x∗, y)

log[1− y(√2+ 1)]
(2.29)

giving γ s1 = 1.
The models which we have just described differ from those of Privmanet al (1988)

in that we have counted vertices in the surface rather than steps in the surface. We can
obtain results for one of Privman’s models in exactly the same way. If we writeG′ for
the generating function (corresponding toG) for this ‘steps-in-the-surface’ model, the only
difference is thatG′ andL are related by

G′(x, y) = 1+ L(y)
1− xy − xy L(y) . (2.30)

A similar argument then shows that the boundary of convergence ofG′ has a singular point
at

(x∗, y∗) = ((2+
√

2)/2,
√

2− 1) (2.31)

which agrees with the result given in Privmanet al (1988).

3. Adsorption of an alternating copolymer

One can model the adsorption of an alternating copolymer in a very similar way. The
underlying walk model is exactly as described in section 2 but the verticesi = 0, 2, 4, 6, . . .
are coloured A and verticesi = 1, 3, 5, . . . are coloured B. Only A vertices interact with
the surface. Ifan(v) is the number of walks withn steps havingv + 1 A vertices on the
line y = 0 andajn(v) is the corresponding number of walks with the firstj steps in the
positivex-direction, then we define the partial generating functions

hj (x, y) =
∑
v,n

ajn(v) x
vyn (3.1)

and the generating function

H(x, y) =
∑
j

hj (x, y) =
∑
v,n

an(v) x
vyn. (3.2)

By inspection,h0(x, y) = 1+ y3 + 2xy4 + · · · . If we considerhj (x, y) with j even, we
note that when the walk first leaves the surface (afterj steps) the last vertex iny = 0 is an
A vertex. Therefore

h2p(x, y) = xpy2p h0(x, y) (3.3)
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and ∑
p>0

h2p(x, y) = h0+ h2+ · · · = h0(x, y)

1− xy2
(3.4)

is |xy2| < 1. Similarly, if j is odd, afterj − 1 steps in the surface the remainder of the
walk starts with an A vertex and has one step in the surface before leaving the surface.
Hence

h2p+1(x, y) = xpy2p h1(x, y) (3.5)

and ∑
p>0

h2p+1(x, y) = h1(x, y)

1− xy2
(3.6)

if |xy2| < 1. Therefore

H(x, y) = h0(x, y)+ h1(x, y)

1− xy2
. (3.7)

If we define

L1(y) = l1y + l3y3+ l5y5+ · · · = (L(y)− L(−y))/2 (3.8)

and

L2(y) = l2y2+ l4y4+ l6y6+ · · · = (L(y)+ L(−y))/2 (3.9)

then the relation betweenH(x, y) andL1(y) andL2(y) is given by the following lemma.

Lemma 3.1.The generating function for the alternating copolymer case is given by

H(x, y) = 1+ L1+ x L2− xy L1(1+ L1+ x L2)+ y(1+ x L2)(1+ x L1+ L2)

(1+ x L2)(1− xy2− xy L1− xy2L2)− xy L1− x L2+ x2y2L2
1+ x2y L1L2

.

(3.10)

Proof. We can write down an equation forh0(x, y) by noting that such walks are either

(i) a single vertex,
(ii) a loop with an odd number of steps, in which case the final vertex (which is on the line

y = 0) is a B vertex,
(iii) a loop with an even number of steps, in which case the final vertex (which is on the

line y = 0) is an A vertex,
(iv) a loop followed by one or more steps on the liney = 0, and the walk might then leave

y = 0.

This gives

h0(x, y) = 1+ L1(y)+ x L2(y)+ L1(y) xy H(x, y)+ x L2(y)[H(x, y)− h0(x, y)].

(3.11)

A similar argument forh1 gives

h1(x, y) = y + xy L1(y)+ y L2(y)+ xy L1(y)[H(x, y)− h0(x, y)] + xy2L2(y)H(x, y).

(3.12)

The lemma then follows on solving the three simultaneous equations (3.7), (3.11) and (3.12).
�
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For smallx the boundary of convergence ofH(x, y) is the line,y = √2− 1, while for
largex it is given by the solution of the equation

(1+ x L2(y))(1− xy2− xy L1(y)− xy2L2(y))− xy L1(y)− x L2(y)

+x2y2L1(y)
2+ x2y L1(y) L2(y) = 0. (3.13)

These two branches meet at the singular point(x∗, y∗) on the boundary of convergence
where x∗ = 2.194 052 87. . .and y∗ = √2 − 1. Hence the free energy is singular at
x∗ = 2.194 052 87. . . . Again the crossover exponent (φ) is 1

2 andγ s11 = 1
2.

4. Discussion

We have described a directed-walk model of copolymer adsorption in two dimensions.
We showed that Temperley’s method of partial generating functions (Temperley 1956)
can be used to solve both homopolymer and alternating copolymer models. We have
determined the locations of the adsorption transitions exactly and have calculated the value
of the crossover exponentφ. In each caseφ = 1

2, as one might expect from universality
considerations. The location of the adsorption transition for the alternating copolymer
x∗(alt) = 2.194 05. . .while that for the homopolymer isx∗(homo) = (√5− 1)/[2(

√
2−

1)] = 1.492 066. . . . Note thatx∗(alt) < x∗(homo)2.
The method which we have used could also be applied to a directed model of other

periodic copolymers.
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